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We investigate the effect of interactions between inclusions on the coarsening behavior of elastically inho-
mogeneous multiphase systems with lattice misfit using a recently introduced two-dimensional multiscale
model based on the classical time-dependent density-functional theory. We show that spontaneous shape
changes are very efficient in limiting the impact of the interactions on the chemical potential of inclusions. For
this reason, the interactions between isolated pairs of inclusions are unable to significantly affect coarsening. At
higher volume fraction, the efficiency of shape changes drops and major shifts of the chemical potential are
observed; these are shown to be strong enough to counteract capillarity. For example, we show that sufficient
confinement by neighboring inclusions causes inverse coarsening and we provide illustrations of this. We also
examine the effect of interface elasticity in the presence of interactions. We demonstrate that elasticity induces
kinetic faceting and gives rise to oscillations in the chemical potential of the inclusions. This is shown to lead
to the stabilization of microstructures composed of inclusions of various sizes. Finally, we propose a simple
modified Lifshitz-Slyozov-Wagner model for assessing the effect of interactions on coarsening. The results are
shown to be in excellent agreement with experiment.
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I. INTRODUCTION

It is well known that the macroscopic properties of mate-
rials depend strongly on their chemical composition. It is
perhaps less appreciated that their macroscale behavior is
also directly related to the microstructure. Indeed, nearly all
properties of materials—optical �1,2�, electrical �3�, and, of
course, mechanical �4,5�—are affected by micro- and even
mesoscale morphological features. Control over the micro-
structure is thus essential to exploiting the full potential of
materials. However, over sufficiently long periods of time,
microstructural evolution may lead to the degradation of the
performance of materials, a phenomenon known as aging.
Reliable models of microstructural evolution are thus re-
quired in order to fully optimize materials with respect to
specific applications.

The canonical model for microstructural evolution
�“coarsening”� in multiphase systems is that of Lifshitz and
Slyozov �6� and Wagner �7� �LSW�. It describes the evolu-
tion of a collection of spherical domains interacting diffu-
sively under the following assumptions: �i� the capillarity
approximation is valid; �ii� the dynamics is exclusively cap-
illarity driven; and �iii� the density of inclusions is vanish-
ingly small �dilute limit�. Within the limits of these assump-
tions, it was shown that coarsening proceeds through the
growth of large inclusions at the expense of small ones so
that the average size of the inclusions �R� increases as t1/3 �in
the diffusion-limited regime�. This behavior—also known as
Ostwald ripening �8� or normal coarsening—has been ob-
served in a wide range of phases, materials, and geometries.

It eventually leads to complete phase separation with only
one domain remaining; from a technological perspective, this
is a rather unpleasant state of affairs.

Fortunately, it is known that microstructures do not al-
ways evolve according to the LSW theory. The possibility of
controlling microstructural evolution opens the door to a
wealth of interesting applications; stabilizing the microstruc-
ture is itself of great importance as it could help extend the
lifetime of materials, perhaps considerably. In the present
investigation, we are concerned with a particular class of
materials exhibiting abnormal microstructural evolution,
viz., elastically inhomogeneous multiphase alloys with lat-
tice misfits, where the microstructure is composed of inclu-
sions �or precipitates� of a given material embedded within a
matrix made out of a different material. A multiphase alloy is
said to be elastically inhomogeneous if the elastic constants
of the matrix and the inclusions are different. Since such
microstructure naturally forms from supersaturated solid so-
lutions, multiphase alloys are commonplace in materials sci-
ence.

The kinetics of microstructural evolution is known to be
strongly affected by elastic effects. Slowdown relative to the
LSW behavior, or even complete stabilization, has been re-
ported in such materials as Ni-Cu-Si �9�, Ti-Mo �10�,
Ni-Al-Ti �11�, Ni-Al-Mo �12�, etc. In some cases, slowing
down is preceded by a normal coarsening phase �9–11�.
Variations of the coarsening exponent or of the asymptotic
average inclusion size as a function of the volume fraction of
inclusions have been frequently reported �9,13�. Also, the
morphology of the microstructures exhibits features that are
not explained by the standard theory. For example, elasticity
is known to induce shape transition in inclusions �12,14� as
well as spatial correlations in both shape and position
�11,12,15�; further, the size distribution is strongly affected
as both widening �11,12,16� and narrowing �13� have been
reported. It is generally accepted that these deviations from
the LSW behavior stem from the fact that the relaxation of
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the elastic energy �originating from either inclusion-matrix
or inclusion-inclusion interactions� competes with the de-
crease of the interfacial energy, hence violating assumption
�ii� of the model. While the nature of the root cause is iden-
tified, the mechanisms leading to such strong changes in ki-
netics are still subject to debate. It should be noted that in
real systems the elastic constants are often anisotropic in
addition to being inhomogeneous. While anisotropy influ-
ences strongly the morphology of the microstructure, it is
now well established—both theoretically �17� and experi-
mentally �9�—that its effect on coarsening is small compared
to that of the inhomogeneities. We thus focus on inhomoge-
neous, but isotropic, systems in the present study.

The objectives of the present work are threefold. First, we
reconsider the problem of interacting inclusions using a two-
dimensional multiscale model we introduced recently �18�.
As is typical for such investigations �19–23�, we describe the
changes in the morphology of the inclusions arising from
interactions but, in contrast with most of the above refer-
ences �see Ref. �24� for a notable exception�, we are mainly
concerned with modifications to the thermodynamic force
that drives coarsening, as obtained by measuring the chemi-
cal potential shifts induced by elastic interactions in either
two-inclusion systems or periodic arrays of inclusions. We
show that, in two-inclusion systems, spontaneous shape
changes are extremely efficient in attenuating the effects of
interactions, leading to small chemical potential shifts even
at very short range. If, however, the inclusions are organized
in a periodic fashion, thus reducing the efficiency of shape
changes, very large shifts—proportional to the volume frac-
tion of inclusions—are measured. We demonstrate that these
elastic corrections are sufficient to significantly alter the
coarsening behavior. Second, following up on our previous
work �25,26�, we examine a problem that has been largely
overlooked, namely, the effect of interface elasticity on the
coarsening behavior of systems of interacting inclusions. We
show that high interface elastic misfits increase the efficiency
of kinetic faceting, hence modifying the behavior of inclu-
sions during growth. The misfits also induce oscillations in
the chemical potentials; these oscillation are able to stabilize
systems of inclusions of different sizes, even in presence of
elastic interactions. A stable system of two inclusions is pre-
sented to illustrate this point. Third, and finally, using the
results of the simulations, we propose a modified LSW
model for the effect of elasticity on coarsening. The model is
able to reproduce the essential characteristics of the experi-
mental observations mentioned above. Based on these re-
sults, we propose that widening of the distribution of inclu-
sions is related to strong interface misfits while narrowing is
a consequence of inverse coarsening. We also show that in-
verse coarsening occurs in simple systems if the confining
effect of the environment is taken into account. Finally, we
show that our model is able to account for the wide variety
of coarsening anomalies described above.

II. THEORETICAL BACKGROUND

From a theoretical point of view, the study of interactions
in elastically inhomogeneous systems dates back to Eshelby

�27�, who first obtained an expression for the interaction en-
ergy between two spherical inclusions with radii R1 and R2,
respectively, embedded in a matrix and separated by a dis-
tance D:
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8�
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where � is the Poisson ratio, �q� is the lattice misfit between
the two phases, and �G� is the difference in shear moduli
between the inclusions and the matrix. This equation is valid
to first order in �G�, and thus for small inhomogeneities.
Eshelby’s formula has frequently been employed to discuss
the effect of interactions on both the morphology and the
kinetics of inhomogeneous systems. For example, concern-
ing the morphology, the interactions are predicted to be re-
pulsive or attractive for hard or soft inclusions, respectively,
and should thus lead to positional correlations between in-
clusions �28,29�, in agreement with experimental observa-
tions. The formula also suggests that coarsening kinetics
would be strongly affected by elasticity. For example, for a
fixed total inclusion volume, Eint is minimal for R1=R2 if the
inclusions are soft ��G��0�. The interaction energy is thus
expected to counteract the normal capillarity-driven ten-
dency for the larger inclusion to grow at the expense of the
smaller one, giving rise to inverse coarsening where the
small inclusion grows until it reaches the size of the large
one �30�. In contrast, for hard inclusions, the interaction en-
ergy is minimum when the size of the small inclusion van-
ishes. In this case, elastic interactions promote coarsening. In
fact, it was shown by Enomoto and Kawasaki �31�—also
assuming spherical inclusions—that for soft inclusions, the
average inclusion size initially increases as t1/3, but later
completely stops because of inverse coarsening; for hard in-
clusions, the normal regime is followed by an acceleration of
coarsening with �R�� t1/2. These authors have also predicted
a narrowing �widening� of the size distribution function for
soft �hard� inclusions.

While of appealing simplicity, a description of coarsening
based on Eshelby’s formula is unable to account for the wide
variety of behaviors observed. For example, slowing down
has been reported in systems of hard inclusions as well �9�.
Also, widening of the distribution function can occur con-
comitantly with slowing down �11,12�. Such disagreements
between theory and experiment may stem from two causes.
First, energetics alone is not sufficient to determine the dy-
namics of systems driven by diffusion since the existence of
an energy minimum does not ensure that it can be reached
dynamically. Second, the validity of Eshelby’s formula �Eq.
�1�� is not always guaranteed: strictly speaking, it is correct
only for spherical inclusions while it is known that elastic
interactions strongly affect the shape of inclusions. In fact, it
was demonstrated by Onuki and Nishimori �32� that two
interacting circular inclusions adjust their shapes such as to
cancel the anisotropic components of the strain field. This
process was shown to be very efficient in reducing the inter-
action energy; the effect of interactions on coarsening is thus
probably much lower than could have been expected from
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Eshelby’s formula. The robustness of inverse coarsening as a
possible pathway to stabilization is hence also questioned.

The relevance of this observation was confirmed in sub-
sequent simulations where constraints on the shape of the
inclusions were lifted. For homogeneous but anisotropic
elasticity, simulations of microstructures composed of a few
inclusions showed that, while transient inverse coarsening is
common, it does not persist long enough to lead to complete
stabilization of the structure �33�. For elastically inhomoge-
neous systems, however, a two-inclusion configuration can
minimize the energy �21�, suggesting that stabilization
through inverse coarsening can indeed occur. However, un-
der diffusive dynamics, complete stabilization was not ob-
served except for highly symmetric initial conditions �34�.

In spite of these observations, the stabilization of complex
microstructures was reported by Onuki and Nishimori �23�.
Their simulations showed an initial, normal coarsening stage,
followed by a transition to a frozen state, suggesting that
stabilization does not necessarily involve inverse coarsening
and that it might in fact be a very robust process occurring
even in complex geometries. Concerns about the validity of
these results were, however, raised by Chen and collabora-
tors who, using an improved formalism for the calculation of
the elastic energy �35�, did not observe stabilization but, in-
stead, a gradual �and rather slow� decrease of the coarsening
exponent, from 1/3 in homogeneous systems to about 1 /4
for a threefold difference in shear moduli between the two
phases �22�. Other large-scale simulations also showed im-
portant reductions of the coarsening rate, but the effect on
the coarsening exponents could not be inferred precisely
�36�.

The origin of the transition from normal coarsening to a
stable �or slowly evolving� state observed in experiment
�9–13� is thus still subject to debate. Further, the role of
inverse coarsening in the anomalous behavior of elastically
inhomogeneous systems remains unclear since it is seldom
observed in simulations. However, as mentioned earlier,
some alloys show a narrowing of the size distribution in the
slow regime, strongly suggesting that inverse coarsening
does occur in certain conditions. Finally, it remains to be
understood why slowing down of coarsening is sometimes
associated with narrowing of the size distribution function,
and sometimes with widening.

III. MODEL AND COMPUTATIONAL DETAILS

As mentioned earlier, we are interested in both bulk and
interface elastic contributions. A proper treatment of these
requires an atomic-scale description of the interphase bound-
aries. In the present investigation, this is achieved using a
multiscale model we recently proposed �18�, which is based
on the time-dependent density-functional theory �TDDFT�
for classical lattice systems developed by Reinel, Fischer and
collaborators �37–39�. The TDDFT provides a system of
master equations for the evolution of the occupation prob-
abilities of each site on the lattice. In our particular imple-
mentation, the TDDFT equations are solved using a multi-
scale framework where the resolution of the calculation
varies from fully resolved at the atomic scale near interphase

boundaries to coarse grained within the bulk phases. This
enables us to treat large systems at a reasonable computa-
tional cost. Further, our implementation also includes the ef-
fect of elasticity using the quasicontinuum method of Tad-
mor and collaborators �40,41�. Note that our treatment of
elasticity imposes coherency at the interface between inclu-
sion and matrix, so that plasticity effects are not taken into
account. This restricts our simulations to modest misfits.
Also note that local elastic relaxation effects are treated at
the mean-field level. A complete description of the model
can be found in Ref. �18�, and an outline is given in Ref.
�26�. As will be shown below, our method has the unique
advantage of giving access to thermodynamical quantities
�e.g., chemical potentials�, a feature usually associated with
mesoscale phase-field models, while preserving the atomis-
tic, Monte Carlo–like description of the microstructure as
required.

In this work, we consider a two-dimensional binary alloy
with vacancies �ABv� and use the TDDFT to model the evo-
lution in time of inclusions composed of a B-rich phase em-
bedded within an A-rich matrix. The atoms are assumed to
interact with their first neighbors through a harmonic poten-
tial of the form

Vi,j
�,� = k�,��ri,j − 	�,��2 − 
�,�, �2�

where ri,j = 	r�i−r� j	; i , j refer to lattice sites and � ,� to atomic
species. The underlying lattice is triangular. All results will
be expressed in dimensionless, reduced units relative to a
stress-free pure A phase: lattice parameter for length �	�,
interaction energy between nearest neighbors for energy �
�,
and inverse trial frequency ��0� for time. In all cases, the
temperature is T=0.5
 /kB �about half of the critical tempera-
ture for phase separation� and the vacancy concentration is
10−3.

The bulk lattice misfit between the two phases is fixed to
3%. Four different combinations of elastic stiffnesses and
lattice parameters are considered, as listed in Table I, namely,
hard inclusions with low interface misfit �HI-LM�, hard in-
clusions with high interface misfit �HI-HM�, soft inclusions
with low interface misfit �SI-LM�, and soft inclusions with
high interface misfit �SI-HM�. An inclusion is hard �soft� if
kBB� ���kAA. The interface misfit qualifies the difference be-
tween 	AB and the typical lattice constant near the interfaces.
Since a hard inclusion tends to impose its lattice constant on
nearby matrix material, a low interface misfit corresponds to
	AB=	BB while a high interface misfit corresponds to 	AB
=	AA. For soft inclusions, the opposite is true. Other param-

TABLE I. Values of the stiffnesses kXY and lattice constants 	XY

for the various types of inclusions considered in the present work.
Stiffnesses are in units of 
 /	2 and lattice constants in units of 	.

Type kAA kAB kBB 	AA 	AB 	BB

HI-LM 50 50 150 1.00 1.03 1.03

HI-HM 50 50 150 1.00 1.00 1.03

SI-LM 50 50 10 1.00 1.00 1.03

SI-HM 50 50 10 1.00 1.03 1.03

EFFECT OF ELASTIC INTERACTIONS ON COARSENING… PHYSICAL REVIEW E 75, 041602 �2007�

041602-3



eters of the potential are 
AA=
BB=
, 
AB=0.7
. While typi-
cal of real alloys, the model parameters are somewhat arbi-
trary and will likely affect the regimes in which either
interfacial or elastic effects dominate; however, the physics
of the microstructural evolution is not expected to be quali-
tatively affected by the precise value of these parameters.

The present study is based on two main types of simula-
tions. First, we consider systems of two initially circular in-
clusions of radii R=60	 and 30	, respectively. In this case,
calculations are carried out within an hexagonal cell of side
1536	 with closed boundary conditions �no flux in or out of
the cell� for the TDDFT �diffusion� equations, and zero-
displacement boundary conditions for the elastic equilibrium
equations. Such a large cell size is required to eliminate
finite-size effects. Second, we consider periodic arrays of
inclusions. The simulation cell in this case is a parallelogram
with a single inclusion placed at its center. Interactions be-
tween inclusions are introduced through periodic boundary
conditions on the elastic equilibrium equation. When needed,
growth is activated by imposing a constant chemical poten-
tial along the edge of an hexagon centered on the inclusion.
Using this technique, all inclusions of the periodic array
grow simultaneously.

IV. RESULTS

In order to isolate the effects of bulk elasticity from those
related to interfaces, we examine first the case of hard inclu-
sions with low misfit �HI-LM�, then move on to study soft
inclusions with low misfit �SI-LM�; the peculiar behavior
arising from large interface misfits will be discussed in Sec.
IV C.

A. Interaction between hard inclusions

1. Two-inclusion systems

We consider first a system of two inclusions placed at the
center of a very large cell. An example of the evolution of
such a system is presented in Fig. 1. As soon as time starts
running, the “inner” surfaces �between the two inclusions�
strongly repel each other, leading to an elongation in the
direction perpendicular to the axis joining the two inclusions.

Such conformational changes have been predicted by
Johnson et al. �42� and subsequently observed in numerous
simulations �43,44�. They can in fact be expected on the
basis of Eshelby’s formula since the interaction energy be-
tween two HI is repulsive. As mentioned earlier, it was
shown by Onuki and Nishimori �32� that shape changes oc-
cur so as to cancel the anisotropic components of the strain
field within the inclusions. Note however that the inclusions
as a whole do not move away from each other �the outer
edges do not move during the simulation; see Fig. 1�, as
observed when a circular shape is imposed �28,45�.

Morphological modifications can be quantified using a
normal-mode analysis where the angular dependence of the
radii of the inclusions is decomposed into a sum of cosines,
viz., R�
�=R0+
l�l cos�l
+�l�. In the present case, the lead-
ing contribution comes from mode l=2 since this corre-
sponds to a uniaxial elongation. Figure 2 clearly shows the
rapid development of the elongated shape, particularly so for
the small inclusion �R�30� where the modulation reaches
about 25% of the radius �R0� at small interinclusion distance
D, compared to roughly 5% for the large inclusion �R�60�.

These shape changes do not occur following the conden-
sation or evaporation of solute atoms, as the sizes of the
inclusions are approximately constant until maximum defor-
mation is reached �see Fig. 2�. At this point, however, solute
atoms start to diffuse from the small inclusion toward the
large one, i.e., coarsening begins; we note that inverse coars-
ening was never observed in such configurations, even for
smaller differences in the size of the two inclusions. Growth
and evaporation are strongly anisotropic: the exchange of
mass occurs almost exclusively at the inner surfaces, leaving
the outer ones practically unaffected. As coarsening pro-
ceeds, the inclusions become increasingly circular
��2→0�—the large one because the strain field of the small
one gradually gets weaker compared to its own, and the
small one because of the increasing importance of capillarity
�which favors a circular shape� as size decreases. The aniso-
tropic character of the flow of solute atoms also favors the
gradual return of the large inclusion to its equilibrium shape.

While the amplitude of the shape changes gives an indi-
cation of the strength of elastic interactions, it cannot be used
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FIG. 1. Evolution in time of two HI-LM initially separated by
D=100	 during coarsening. The dotted line represents the initial
configuration.
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FIG. 2. Relative amplitude of mode 2 for different distances D
between two HI-LM with initial radii of 30	 and 60	, respectively:
circles, D=100	 �cf. Fig. 1�; squares, D=150	; diamonds, D
=200	. Arrows indicate the flow of time.
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directly to predict the effect on coarsening. Indeed, large
variations in the shape imply extensive relaxation in re-
sponse to an initially strong interaction, but the interactions
are not necessarily strong once relaxation is completed. To
obtain information about coarsening, one must measure
changes in the thermodynamic force which drives diffusion,
given here by the difference in chemical potentials ��i

1

−��i
2, with ��i

k=�B−�A within inclusion k. The evolution
of ��i for each of the two inclusions is presented in Fig. 3
for two different separations D; for reference, ��i for an
isolated inclusion �continuous line; fit to the data of Ref.
�26�� is also plotted. As expected, when the distance between
the inclusions is large �e.g., D=300	�, the interactions do not
significantly affect ��i and the two inclusions behave as if
they were isolated; in this case, elasticity evidently does not
affect the coarsening behavior of the system in any signifi-
cant manner. However, as the distance decreases, the repul-
sive character of the interactions manifests itself, essentially
through an upward shift of ��i; note that the shift mostly
concerns the small inclusion �R�30�, leaving the large one
�R�60� almost unaffected. This anisotropy results in an in-
creased driving force for coarsening ���i

1−��i
2 increases�

and hence accelerated coarsening compared to the elastically
homogeneous case. The magnitude of the shift is, however,
relatively small compared to the variations due to size
changes, even at very small D. Further, as shown in the inset
to Fig. 3, the shift �as obtained by fitting the different ��i
curves to a smooth function of 1/Req� decreases rapidly with
increasing distance ��D−2.22�. This points to the high effi-
ciency of shape changes in lowering the interaction energy,
and therefore minimizing the effect on coarsening.

2. Periodic arrays of inclusions

If shape changes are efficient in limiting the impact of
pair interactions on coarsening, the behavior of microstruc-
tures containing a large density �volume fraction� of inclu-
sions cannot be inferred from the study of simple configura-
tions composed of only a few inclusions. In denser
arrangements, the efficiency of the relaxation process is

likely to decrease sharply because of the more stringent con-
straints imposed by many-body effects. Since a direct simu-
lation of large multi-inclusion systems would be computa-
tionally prohibitive within the present TDDFT framework,
we instead use periodic arrays of inclusions as model sys-
tems.

In a first series of simulations, we imposed conditions of
growth in order to study the effect of increasing volume frac-
tion. The evolution of the morphology of an inclusion so
obtained is shown in Fig. 4; here, the period of the array is
160	. The inclusion is found to remain essentially circular
during growth, except near the end of the process where
deformations develop, which are, however, quite small in
comparison to those observed in the two-inclusion system
�cf. Fig. 1�. Constraints forced upon the inclusion by the
complex environment therefore prove to be very strong, as
expected.

While the impact of inclusion-inclusion interactions on
morphology is relatively minor, the opposite is true for the
chemical potential. The effect is in fact so strong that, as
shown in Fig. 5, ��i is completely dominated by elasticity
by the time the volume fraction reaches about 5% �which
occurs near Req=15	 in the present geometry�. Indeed, at
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FIG. 3. Chemical potential difference ��i between species B
and species A as a function of size for two HI-LM with initial radii
of 30	 and 60	, respectively: circles, D=100	; squares, D=300	;
continuous line, ��i for an isolated inclusion. Inset: shift in ��i in
the small inclusion as a function of D.
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FIG. 4. Growth of HI-LM belonging to an array of period
160	.
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FIG. 5. Chemical potential difference ��i �dashed lines� be-
tween species B and species A for an array of HI-LM of period
160	. �a� ��i as a function of size; the continuous line is for an
isolated HI-LM and shows the normal capillarity-driven shift. �b�
Shift in ��i as a function of the volume fraction of the inclusions;
the circles show the results for a periodic array of HI-LM following
static relaxation; see text for details.
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this point, ��i starts to increase with Req, while capillarity
prescribes a 1/Req decay �continuous line in Fig. 5�a��. Upon
varying the separation D, we find that ��i can be decom-
posed into the usual capillarity term plus a shift due to elastic
interactions whose magnitude is controlled by the volume
fraction; the latter is plotted in Fig. 5�b�. The shift is initially
a �roughly� linear function of the volume fraction. Note that
a linear variation with volume fraction is equivalent to a D−2

dependence with respect to interinclusion distance, not too
far from the D−2.22 variation observed for pair interactions.
However, as can be appreciated by comparing Figs. 5�b� and
3 �inset�, typical shifts here are one or two orders of magni-
tude larger than in the two-inclusion system.

For high volume fractions, the above method cannot be
used because the presence of a source of solute atoms close
to the inclusion could lead to artificial effects. In this regime,
we use instead a sequence of relaxations with periodic
boundary conditions on the TDDFT equations, keeping the
inclusion size fixed at R=30	 and varying the size of the
simulation cell. The results are presented as circles in Fig.
3�b�. At low volume fraction, the measured shifts agree well
with those obtained in the growth simulations, indicating that
the elastic contribution indeed decouples from the capillarity
contribution. At higher volume fraction, nonlinearities ap-
pear, further increasing the elastic shift. Note that for a vol-
ume fraction of 0.5, the shift amounts to �300% of the value
of ��i for an isolated inclusion.

B. Interaction between soft inclusions

1. Two-inclusion systems

From Eshelby’s formula, Eq. �1�, we expect soft inclu-
sions to exhibit a very different behavior than hard inclusions
since the interaction is now attractive. Further, as shown by
Johnson et al. �42�, the local growth rate should be larger
along the alignment axis than across, leading to the elonga-
tion of the inclusions along this axis. This is observed in our
TDDFT simulations, as shown in Fig. 6. The inclusions
gradually adopt an egglike shape, pointing toward one an-
other, typical of interacting soft inclusions �44�. Our calcula-
tions reveal that shape changes occur rapidly for the small
inclusion, but more slowly for the large one; also, as shown
in Fig. 7, deformations occur at nearly constant size for the

small inclusion, but develop concomitantly with growth for
the large inclusion.

As coarsening proceeds, there are two possible outcomes:
either the inclusions merge �see Fig. 6�a�� or the large inclu-
sion grows at the expense of the small one �see Fig. 6�b��. In
the first situation, coalescence follows from the formation of
a sharp tip on the inner surface of the large inclusion, which
rapidly grows toward the small inclusion until the two
merge. Soft inclusions are well known for their tendency to
coalesce with their neighbors �19� and, as a result, the softer
phase often assumes the role of the matrix, even at very low
volume fraction �22�. This process is particularly efficient
because a local elastic energy minimum �and hence a local
chemical potential minimum� forms at sharp interface fea-
tures such as tips �18�. Note that merging does not result
from the displacement of the inclusions but, rather, from
shape changes and directional growth. In the second situa-
tion, coarsening occurs diffusively: the small inclusion
gradually evaporates and solute atoms diffuse toward the
large one. In this process, the small inclusion returns to a
circular shape while the large one becomes increasingly el-
liptic because of the anisotropic solute supply �see Fig. 7�;
the elongation is very large compared to the HI case. Only
when the small inclusion has completely evaporated does
relaxation toward a circular shape begin.

The lack of a significant spontaneous reorganization of
the large inclusion in the present �soft� case, as compared to
the hard case, can be explained by the relatively small am-
plitude of the elastic perturbations caused by the small inclu-
sion �which has kBB=10
 /	2 vs 150
 /	2 for hard inclu-
sions�, while the capillary forces �which favor a circular
shape� are roughly equal. The relatively small driving force
pulling the large inclusion back to equilibrium can also be
attributed to elasticity. Indeed, it is known that the elastic
energy of an isolated soft inclusion is minimized for an el-
lipse instead of a circle, whereas the circle is preferred for a
hard inclusion �46�. Thus, while both capillarity and elastic-
ity favor the circle for hard inclusions, they compete in the
case of soft inclusions, leading to a slower relaxation pro-
cess. The formation of such long-lived, out-of-equilibrium
shapes in growth conditions has been observed in our previ-
ous TDDFT calculation �18�.
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FIG. 6. Evolution in time of two SI-LM during coarsening: for
interinclusion distance D��a� 120	 and �b� 150	.
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Even if the deformations of the two inclusions are now of
comparable magnitude, the variations of the chemical poten-
tials ��i are still largely restricted to the small inclusion, as
shown in Fig. 8. These results indicate that elastic correc-
tions are very small for the large inclusion, even at small D.
For the small inclusion, however, ��i shifts slightly down-
ward relative to the isolated inclusion �continuous line�, in
qualitative agreement with Eshelby’s formula. As shown in
the inset to Fig. 8, the magnitude of this shift decreases ex-
tremely rapidly with increasing distance, roughly as D−4.65. It
must be concluded that elastic interactions have a stabilizing
effect only at very short separations, since the driving force
for coarsening decreases with increasing interaction. Also,
the shifts in ��i are not primarily caused by changes in the
shape of the inclusion but, rather, by the strain which is
present within the inclusions.

For the parameters used here, inverse coarsening—which
requires ��i to be lower in the small inclusion than in the
large one—is unlikely, as a very small size difference is re-
quired for the elastically induced shift to counterbalance the
capillarity 1 /Req term. But since the chemical potential shifts
in the two inclusions have to be equal at equal sizes �by
symmetry�, the shift of the small inclusion decreases as its
size increases relative to the large one. One can also obtain a
sharp drop of ��i in the smallest inclusion by decreasing D
�circles in Fig. 8�; this route, however, leads to coalescence,
as we have seen above.

2. Periodic arrays of inclusions

We now turn to periodic systems of soft inclusions, first
investigating the dependence on volume fraction; to this end,
we impose growth on an array of inclusions with lattice con-
stant fixed to 160	. Here again, as shown in Fig. 9, the effect
of interactions on the shape of the inclusions is very
modest—compare to the two-inclusion system, Fig. 6. As in
the case of hard inclusions, the presence of many neighbor-
ing inclusions efficiently impedes relaxation through shape
changes.

Because of the limited efficiency of relaxation, the effect
of interactions on the coarsening behavior increases consid-

erably. Surprisingly, the sign of the chemical potential shift is
also affected: as shown in Fig. 10, interactions now cause an
increase of ��i compared to isolated inclusions, even at
small sizes �low volume fraction�, while it was found to de-
crease in the two-inclusion system �see Fig. 8�. Because of
the lower elastic energies involved, the shifts in ��i are
however much more modest than for hard inclusions, reach-
ing about 10% for a volume fraction of 0.35 �see Fig. 10�b��.
Further, the results at high volume fraction �obtained as dis-
cussed in Sec. IV A 2� indicate that the rate of increase of the
shift decreases at higher volume fraction. Note, however, that
the impact of interactions is still at least one order of mag-
nitude larger in periodic systems than in two-inclusion sys-
tems. In the present case, these modest corrections are suffi-
cient to counterbalance the 1/Req capillarity term for Req
�50	 �the dashed line in Fig. 10�a� stops decreasing with
increasing Req�. Finally, as is the case for hard inclusions, the
shift in ��i initially increases roughly linearly with volume
fraction, indicating a D−2 dependence on interinclusion sepa-
ration. This is much faster than the −4.65 exponent for the
two-inclusion system, further demonstrating the efficiency of
shape relaxation in limiting the effect of interactions on
coarsening.
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FIG. 8. Chemical potential difference ��i between species B
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of 30	 and 60	, respectively: circles, D=120	; squares, D=150	;
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FIG. 9. Growth of SI-LM belonging to an array of period
160	.
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FIG. 10. Chemical potential difference ��i �dashed lines� be-
tween species B and species A for an array of SI-LM of period
160	. �a� ��i as a function of size; the continuous line is for an
isolated HI-LM. �b� Shift in ��i as a function of the volume frac-
tion of the inclusions; the circles show the results for a periodic
array of SI-LM following static relaxation; see text for details.
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C. The role of interface misfit

Having discussed the impact of bulk elasticity, we now
turn to the specific role of interface misfits in systems of
inclusions. This follows up on recent work where we dem-
onstrated the importance of these misfits in the evolution of
isolated inclusions in elastically inhomogeneous systems
�25,26�.

We examine first the impact of elastically induced kinetic
faceting on coarsening. From a mesoscopic point of view,
kinetic faceting results from the difference in growth speeds
between different interfacial orientations �47�. During
growth, the contribution of slow orientations �usually low-
energy facets� to the shape of the inclusion increases, as fast
orientations rapidly “grow out” of existence �48�. From a
microscopic perspective, kinetic faceting occurs when the
growth of preexisting terraces outpaces the nucleation of new
terraces �49�. Conversely, upon evaporation, the slow orien-
tations gradually disappear �48�. We have shown, using TD-
DFT, that elasticity can intensify kinetic faceting through
either the imposition of a barrier to the nucleation of new
terraces, or the increase of the relative stability of steps com-
pared to other sites at the surface �25,26�.

An example of kinetic faceting is given in Fig. 11 for two
SI-HM with D=150	; only the large inclusion is displayed
since kinetic faceting does not affect the small one �which
lies on the right�. The figure clearly shows the rapid forma-
tion of facets along the low-energy �10� orientations of the
triangular lattice. Subsequent growth occurs by the succes-
sive addition of atomic layers on the facets facing the small
inclusion; this gradually leads to the growth of the two facets
parallel to the x axis, while other facets retain their original
orientation and length. This behaviour is to be contrasted
with that for the SI-LM case, Fig. 6�b�, where the large in-
clusion adopts a smooth, facet-free shape which becomes
increasingly elongated during growth.

Such morphological changes have consequences on the
chemical potential of the inclusions; as shown in Fig. 12,
��i actually increases in the large inclusion as growth pro-
ceeds, gradually pushing it away from the equilibrium curve.

This is to be contrasted with the low-misfit case �see Fig. 8�,
where kinetic faceting does not occur and the large inclusion
closely follows the expected behavior. These results clearly
demonstrate that, while ��i is relatively unaffected by mor-
phological modifications involving changes in the local cur-
vature �see Sec. IV B�, it is very sensitive to changes in the
nature �i.e., rough vs faceted� of some regions of the inter-
face. In contrast, the small inclusion remains free of facets
and closely mimics the SI-LM behavior during coarsening.

Kinetic faceting affects coarsening because it allows in-
clusions to follow different ��i�Req� curves upon growth or
evaporation. In the present case, this results in a slowdown
of coarsening since faceting of the large inclusion causes an
increase of ��i and hence a decrease in the driving force for
diffusion. Notice that the magnitude of changes in ��i due to
kinetic faceting is relatively small compared to shifts due to
elastic interactions in dense systems �see Fig. 10�. Kinetic
faceting could nevertheless become important in the later
stages of coarsening when the size of the inclusions gets
large �and hence the differences in ��i get small� or when
neighboring inclusions have similar sizes.

The importance of kinetic faceting in coarsening is, how-
ever, difficult to assess precisely because its occurrence
makes the instantaneous state of inclusions history depen-
dent. Indeed, partially faceted shapes can be very stable since
large barriers may separate them from their equilibrium con-
figuration �50�; the state of an inclusion at any given time is
thus a function of the duration and intensity of previous
growth and evaporation episodes. Adding to the difficulty is
the fact that the faceting efficiency is strongly rate depen-
dent. On the one hand, if growth is too slow, thermal fluc-
tuations are able to restore the equilibrium shape of the
inclusion—even in the presence of kinetic biases—and face-
ting will not occur. On the other hand, if growth is too fast,
the differences in chemical potential between different
atomic states of the interface become insignificant compared
to the driving force so that kinetic roughening occurs instead
�49�. Since the effects due to faceting are relatively small
compared to those due to elasticity, we will not attempt to
quantify further their impact.
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FIG. 11. Evolution in time of large SI-HM initially separated by
D=150	 from a small inclusion �located on the right; not shown�
during coarsening. The dotted line represents the initial
configuration.
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FIG. 12. Chemical potential difference ��i between species B
and species A as a function of size for two SI-HM with initial radii
of 30	 and 60	, respectively, D=150	 apart. The inset is an en-
larged view of ��i for the large inclusion. The continuous lines
give the behavior for an isolated inclusion.
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The discrete nature of growth through successive addi-
tions of atomic layers also manifests itself in oscillations of
��i, as shown in the inset to Fig. 12 where maxima corre-
spond to completely filled layers and minima to newly nucle-
ated terraces. Oscillations occur because of modulations in
the shape of the inclusions or changes in the energetics of
interface sites available for addition �of solute atoms� or
evaporation �26�. These oscillations are significant because
they provide a pathway to the stabilization of microstruc-
tures. Indeed, oscillations act as chemical potential barriers
hampering coarsening; while such barriers can be overcome
by thermal fluctuations, they still slow down coarsening con-
siderably by pushing the system away from a thermodynami-
cally driven coarsening regime to a nucleation-driven regime
�51�.

Oscillations were observed in all the dilute elastically in-
homogeneous systems we examined, and found to be stron-
gest when the interface misfit is large �26�. Systems where
interactions are important are no exception, as can be seen in
Fig. 13. The oscillations in ��i are in fact much larger for
interacting HI-HM �dashed line� than for interacting HI-LM
�dotted line�. Comparison between the interacting HI-HM
and the isolated HI-HM, however, indicates a significant de-
crease of the amplitude in presence of interactions. This can
be explained by the reduced symmetry of the interacting sys-
tem: because of the anisotropy of the strain field and of the
supply of solute atoms, equivalent interfacial orientations in
different regions of the inclusion grow at different speeds,
leading to a desynchronization of the processes which cause
oscillations in the chemical potential. In contrast, for a highly
symmetric inclusion with an isotropic supply of solute at-
oms, these processes �e.g., the nucleation of new atomic lay-
ers� occur completely in phase. These arguments also explain
the lack of regularity in the behavior of ��i for interacting
inclusions compared to the regular oscillations �of period
�3	 /2—see Ref. �26�� for isolated inclusions. Note that
when growth occurs in a layer-by-layer fashion, as is the
case for the large SI-HM depicted in Fig. 11, oscillations can
still be mostly regular, even in presence of interactions �see
Fig. 12�.

Despite their reduced amplitude, oscillations can still
strongly hamper coarsening. Indeed, in a two-inclusion situ-

ation, if the intervals of ��i swept the different inclusions
overlap, i.e., ���i

1,min ,��i
1,max�� ���i

2,min ,��i
2,max���, a

large number of metastable configurations become acces-
sible. In contrast, in the purely capillarity-controlled case, the
monotonic behavior of the chemical potential inexorably
leads to a final state composed of a single inclusion. An
example of such a metastable configuration is shown in Fig.
14 for a two-HI-HM system with initial sizes 40	 and 30	:
after a brief transient period, growth and evaporation cease
and the configuration stabilizes. Such situations are ex-
tremely easy to obtain at high interface misfits: they appear
as soon as the difference in ��i between the inclusions and
the amplitudes of the oscillations are comparable. Note that
these configurations are not true equilibrium states because
��i still decreases on average with increasing size �see Fig.
13�. Thus, thermal fluctuations could overcome the chemical
potential barrier imposed by oscillations, enabling coarsen-
ing to proceed further. However, since the chemical potential
landscape is very rugged, a large number of crossings are
required before the thermodynamic force can freely drive
diffusion again. Short-period oscillations of the chemical po-
tential thus provide a very robust mechanism leading to sta-
bilization of microstructures, even in the presence of interac-
tions.

V. DISCUSSION

A. Interactions and confinement

Our results emphasize the highly nonlinear character of
elastic interactions between inclusions in multiphase alloys.
Indeed, the response of an inclusion to the presence of a
neighboring inclusion was found to depend strongly on the
local environment or, more precisely, on the strength of con-
straints imposed by the local environment. If there is a single
neighbor, for example, the constraints impeding elastic relax-
ation are small. In this case, as shown in Secs. IV A 1 and
IV B 1, substantial shape changes take place and chemical
potential shifts of at most a few percent �relative to isolated
inclusions� can be expected, even for very small separations.
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FIG. 13. Chemical potential difference ��i between species B
and species A as a function of size for two HI-HM with D=150	
�dashed line�, two HI-LM with D=150	 �dotted line�, and an iso-
lated HI-HM �continuous line�.
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FIG. 14. Coarsening of two HI-HM with initial radii of 30	 and
40	, respectively, separated by D=140	: �a� time evolution of the
equivalent radii of the inclusions; �b� initial �dotted lines� and meta-
stable �continuous lines� shape of the inclusions.
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The calculated shifts are in qualitative agreement with the
predictions of Eshelby’s formula: interactions cause stabili-
zation of soft inclusions and destabilization of hard inclu-
sions. However, the magnitude of the corrections to the
capillarity-driven behavior is so small that it is unlikely that
coarsening could be significantly affected.

In the case where there are many neighboring inclusions,
now, relaxation by shape changes becomes inefficient be-
cause of the severe constraints imposed by the environment.
As discussed in Secs. IV A 2 and IV B 2, the effect on the
chemical potential is one or two orders of magnitude larger
than in the two-inclusion case. For both SI and HI, the inter-
actions were found to increase the chemical potential, hence
counteracting the normal 1 /Req dependence of ��i. Further,
the shifts were shown to be additive constants proportional to
the volume fraction �see Figs. 5�b� and 10�b��.

These results suggest a simple model for the effect of
interactions on the chemical potential shift of an inclusion,
based on the following observation: neighboring inclusions
may be viewed as obstacles impeding the relaxation of the
internal strain energy of a given inclusion. Consider a single
inclusion in an infinite two-dimensional matrix; the displace-
ment field decays as 1/r. Adding a second inclusion forces
the displacement �or at least some of its components� to van-
ish somewhere along the line joining the two inclusions.
Since there is still plenty of room in which to relax the ex-
cess elastic energy, shape changes are able to efficiently
modify the strain field in order to make use of this free vol-
ume; impact on the chemical potential is therefore small. For
a periodic array of inclusions, now, the displacement field is
constrained in every direction, thus reducing considerably
the volume available for the inclusion to relax its strain
energy—here given by the volume of the unit cell of the
array. In this case, a significant portion of the elastic energy
remains stored within the inclusion, causing a strong increase
of its chemical potential.

In order to test the validity of this simple model, we car-
ried out a series of simulations where the volume available
for the relaxation of the strain energy is efficiently controlled
using finite-size cells rather than interactions between inclu-
sions. To this end, zero-displacement boundary conditions
were imposed on the elastic equilibrium equation while
closed boundary conditions were used for the TDDFT equa-
tion. The simulation cell is either a regular hexagon with all
sides varying between 40	 and 152	, or a hexagon with four
sides of length 72	 and two others of length varying between
40	 and 152	. The angle between adjacent edges of the cells
is set to 2� /3. A single circular inclusion with Req=30	 is
placed at the center of each cell. The results of these calcu-
lations are reported in Fig. 15, together with those for a pe-
riodic array of inclusions �circles�. From the finite-cell,
regular-hexagon data �squares�, we see that the effect of
physically restricting the volume available for relaxation is
indeed very similar to that resulting from the presence of
other inclusions �circles�. This agreement is not a fortuitous
consequence of the high symmetry of the systems: for the
irregular-hexagonal cells �diamonds�, we find that inclusions
are able to modify their shapes in order to make use of the
strongly asymmetric distribution of free volume, similar to
what is observed for two-inclusions systems. The end result

is then the same as if confinement were isotropic, as far as
coarsening is concerned. Of course, it is not as easy to define
the “volume available for relaxation” in nonsymmetric multi-
inclusion systems; we will return to this important point be-
low. While we are not interested in fixed-size systems per se,
we will show below that the equivalence between different
modes of confinement is useful for understanding the effect
of interactions on coarsening.

This model helps understand why long-lasting inverse
coarsening is usually not observed in simple microstructures
composed of only a few inclusions. In such a case, confine-
ment is poor since very large volumes are available to relax
the elastic energy; elastic corrections are thus small and nor-
mal coarsening eventually prevails. In contrast, as the vol-
ume fraction increases, coarsening gradually shifts from
“larger is more stable” to “larger volume available for relax-
ation is more stable” since elastic contributions to the chemi-
cal potential are proportional to the local volume fraction;
this transition is clearly visible in Fig. 5, suggesting that
inverse coarsening should be observed in a confined environ-
ment.

To test this hypothesis we studied the evolution of a two-
HI-LM system in a hexagonal cell with two sides of length
256	 �along the axis joining the two inclusions� and four
sides of length 128	; we used closed boundary conditions
for the TDDFT equations and zero-displacement boundary
conditions for the elastic equilibrium equations. This finite
cell emulates the confining effect of the environment. The
initially circular inclusions had radii of 30	 and 40	, respec-
tively, and were 100	 apart, corresponding to an average
volume fraction of �0.1. The evolution of the system is
presented in Fig. 16; as expected, the effect of confinement is
strong: diffusion now carries solute atoms from the large to
the small inclusion, i.e., inverse coarsening takes place. Dif-
fusion, however, stops before the inclusions reach a common
size, demonstrating the existence of other stable states be-
sides the symmetric one. From Fig. 16�b�, one also finds that,
in contrast to the unconfined case, inclusions move during
the simulation. Thus, under strong confinement, displace-
ment of the inclusions and inverse coarsening are important
for relaxing the strain energy; under weak confinement, this
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FIG. 15. Chemical potential shifts ��i for �a� HI-LM and �b�
SI-LM in different situations of confinement. Circles: periodic array
of inclusions; squares, single inclusion in a regular-hexagon cell;
diamonds, single inclusion in a hexagonal cell of varying aspect
ratio �see text for details�.
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proceeds through shape changes alone. Note that inverse
coarsening and motion of the inclusion are processes taking
place on very long time scales ��1012−1013��0� compared to
shape changes �1011�0�.

Inverse coarsening is found to be an extremely robust
process in confined environments: in the system described
above, it occurs for inclusions as small as 20	; normal coars-
ening is restored only at smaller size. The final state, how-
ever, depends on the sizes of the inclusions and the distance
between them, and both symmetric and asymmetric configu-
rations are observed.

These results have important consequences regarding the
volume available to each inclusion for relaxing its strain en-
ergy. In the system described above, the entire cell may be
partitioned into two “available volumes,” one for each inclu-
sion. The occurrence of inverse coarsening implies that the
effect of confinement is stronger on the large inclusion than
on the small one or, equivalently, that in a multi-inclusion
setting the volume available for the relaxation of an inclu-
sion’s strain energy scales sublinearly with its own volume.
This is an extremely significant result since it implies that
elasticity will eventually hamper the growth of larger-than-
average inclusions.

B. Interactions and coarsening

We now investigate the consequences of these observa-
tions on the coarsening behavior of multi-inclusion systems.
To this effect, we propose a simple LSW-type model modi-
fied to take the effect of elastic interactions into account; the
LSW equations are solved numerically to yield the time evo-
lution of the distribution in size of the inclusions. A similar
model is described in detail in Ref. �26�. The only input
needed is the relation between the activity �or, equivalently,
��i� and the size of an inclusion. The activity results from
two contributions: one from capillarity, which decays as 1/R,
and one from elasticity, which we take to be linearly propor-
tional to the local volume fraction, i.e., inversly proportional
to the available volume �see Fig. 15�:

Ai�t� = C1/R + C2Vf
l�R,t� , �3�

where C1 is a parameter related to the interface free energy,
C2 describes the strength of elastic interactions, Vf

l�R�
=�R2 /Vi�R , t� is the local volume fraction around an inclu-
sion of size R, related to the volume Vi�R , t� available to an
inclusion, which we assume proportional to its real volume
to some power �, Vi�R , t�=N�t���R2��, with N�t� a time-
dependent normalization factor ensuring that the sum of the
Vi’s is constant. As mentioned above, the existence of inverse
coarsening in a confined geometry implies ��1. In practice,
the relation between the volume of an inclusion and the vol-
ume available to it for relaxation in a multi-inclusion setting
is obtained by first calculating the chemical potential shifts
for several nonsymmetric two-inclusion systems in confined
geometry and then using the relation between chemical po-
tential shift and available volume obtained from simulations
of single inclusions in cells of fixed size. In this way, it is
possible to parametrize the functional form proposed above;
analysis of our simulation results indicates that 0.4��
�0.6. In what follows, we set �=0.5. This choice, as well as
the actual functional form used, is not critical, as we found
no qualitative differences in the results for values of � be-
tween 0 and 1. This is also true of the other parameters of the
model, which affect only the length and time scales of the
problem; we set C1=2.5�10−4	−1 and C2=10−4.

Of course, this model can only give a rather crude de-
scription of the real coarsening dynamics. The LSW model is
formally correct only in the limit Vf →0. It is known that
increasing the volume fraction leads to wider and more sym-
metric distribution functions than predicted by LSW, but that
the coarsening exponent is not significantly altered �52�.
Also, elastically induced correlations could modify the
coarsening behavior; this possibility is not considered in
LSW-type models because the inclusions are assumed to in-
teract with the environment in a mean-field way. Thus, our
model cannot be expected to yield quantitative results, but it
should capture the essentials of elastic inhomogeneity.

The dependence on time of the average inclusion size �R�
for different volume fractions Vf obtained within this model
is presented in Fig. 17. We note first that in the dilute limit
�Vf →0�, coarsening is normal, well described by a single
exponent 1 /3 as predicted by the LSW theory. In contrast, at
finite volume fraction, significant departures from the normal
behavior are observed, and coarsening is found to proceed in
three distinct phases. First, after an initial transient period, a
power-law dependence with an exponent somewhat smaller
than 1/3 is observed, and the higher the volume fraction, the
smaller the exponent, which gradually decreases �intermedi-
ate phase�, and finally reaches 0 �third phase�—the system
stabilizes and coarsening apparently stops; this occurs at in-
creasingly small average size as the volume fraction in-
creases. Inverse coarsening sets in once �R� reaches its maxi-
mum value. This can indeed be seen from the size
distribution function, shown in Fig. 18: at finite volume frac-
tion �dashed line�, the distribution gradually gets narrower
�compare with the continuous curve for Vf →0�, converging
to a � function at later times. Such a behavior signals the
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growth of small inclusions at the expense of larger ones, i.e.,
inverse coarsening.

In spite of its crude nature, our model is in remarkably
good qualitative agreement with experiment. Stabilization
has indeed been observed over long time scales in a wide
range of inhomogeneous alloys �9,11,13�. Also, as expected,
the maximum average size decreases with increasing volume
fraction when stabilization occurs �9�. Finally, on small and
intermediate time scales, a gradual decrease of the coarsen-
ing exponent with increasing volume fraction is observed, in
agreement with experimental results �13�. Our simple model
thus captures the essential physics of coarsening in elasti-
cally inhomogeneous systems.

Within LSW-type models, the existence of an asymptotic
distribution function that is nonzero at a given finite R im-
plies that the activity function possesses a minimum at this
value of R. Indeed, any monotonically decreasing activity
function leads to a distribution such that �R�→�. Elastic
inhomogeneities yield such a minimum through the size-
dependent chemical potential shifts which penalize large in-
clusions. While the narrowing of the distribution function
observed in some alloys during the stable or very slowly
coarsening stage �13� �third stage of the present model� is

consistent with the presence of a single minimum,
widening—also observed in some cases �11,12,16�—requires
many. As demonstrated in Sec. IV C, chemical potential os-
cillations caused by interface misfits provide a mechanism
for the existence of such a rugged landscape, enabling mi-
crostructures composed of inclusions of various sizes to be-
come �meta�stable against coarsening. These oscillations can
be accounted for by adding a term in Eq. �3�, which we now
write

Ai�t� = C1/R + C2Vf
l�R,t� + C3�cos�4�R/�3� + 1�/2. �4�

Since the results are not affected by the period of the oscil-
lations we use, for simplicity, the value appropriate for iso-
lated inclusions, viz., �3/2	; we set C3=1.5�10−6.

We previously demonstrated that oscillations alone, i.e.,
without elastic effects �C2=0�, are able to induce a transition
from a normal coarsening state to a frozen state �with the
present choice of parameters, this occurs at �R�
140	 �26��
and that slowing down is accompanied by the formation of a
long tail at large sizes in the distribution function. If contri-
butions from both oscillations and elastic interactions �C2
�0, C3�0� are included, now, the evolution of the micro-
structure is not modified dramatically. As shown in Fig. 17
for a volume fraction of 5%, the main differences are a de-
crease of the maximum �R�, a slight decrease of the coars-
ening exponent in the first phase, and a reduction of the
duration of the intermediate regime. In contrast, the size dis-
tribution is significantly affected. As illustrated in Fig. 18
�dotted line�, it stabilizes with a finite width—wider than the
normal LSW distribution—in agreement with the above dis-
cussion. Also, the formation of a long tail is avoided because
elasticity prohibits the growth of very large inclusions. Note
that, while widening is a robust feature of the model, the
precise shape of the distribution function is quite sensitive to
the amplitude of the oscillations.

These results demonstrate that the oscillations in the
chemical potential induced by the interface misfits are able to
stabilize microstructures containing inclusions of various
sizes, even in presence of interactions. The oscillations are
also able to prevent inverse coarsening and hence account for
the widening of the distribution function observed in some
alloys �11,16,12�. Finally, the model suggest that interface
misfits strongly contribute to the slowing down of coarsening
in cases where it initially occurs with an exponent close to
1/3 but then abruptly stops �9–11,13�, since, as our model
indicates, an exponent of 1 /3 is associated with small bulk
elastic effects. In this case, however, slowing down is ex-
pected to be very gradual �see Fig. 17 at low volume frac-
tion�; in contrast, the transition from normal coarsening to
frozen state is possible in presence of large interface misfits
�26�. In this case, bulk elasticity would only assist the tran-
sition by slowing down the growth of large inclusions, thus
making the transition sharper. These results demonstrate that
essentially all of the coarsening anomalies described above
can be understood if the effect of both interactions and inter-
facial elasticity are considered.

As a final point, it must be mentioned that another mecha-
nism besides oscillations may cause the stabilization of dis-
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tribution functions of finite width: the ruggedness of the ac-
tivity could indeed originate from local variations of the
environment of the inclusions, an effect not taken into ac-
count in the present model. This would require some sort of
self-organization of the available volumes, as simple random
fluctuations eventually lead to a monodisperse distribution of
inclusion sizes in absence of chemical potential oscillations.
This problem will be the subject of further work. The fact
that significant inverse coarsening was never observed in
large-scale simulations �22,23,36� may indicate that such
self-organization processes do occur. It may also be simply
due to limitations in time of the simulations, as inverse
coarsening only becomes significant in the very late stages of
microstructural evolution, once the average inclusion size
has reached its final value. Before this stage is reached, elas-
ticity is only expected to slow down the growth of large
inclusions in comparison to the homogeneous case.

VI. CONCLUSION

We have investigated the role of interactions between in-
clusions on the coarsening dynamics of elastically inhomo-
geneous alloys with lattice misfit. From our study of two-
inclusion systems, we found that shape changes are the main
process by which strain energy relaxes. The latter was found
to be so efficient that coarsening is not significantly affected
by interactions. However, we have also found that the effi-
ciency of the mechanism drops for denser arrangements of
inclusions, leading to corrections proportional to the local
volume fraction. In this case, the effect of elasticity on coars-
ening increases by one or two orders of magnitude so that
these corrections are sufficient to counteract the usual
capillarity-dominated behavior. In contrast to what would be
expected from Eshelby’s formula, the effect of interactions is
qualitatively the same if both hard and soft inclusions are
organized in dense arrangements.

In the second part of this study, we examined the impact
of interface elasticity on coarsening. Interactions were shown
to modify very little the role of interface misfit in compari-
son to the dilute limit �26�: interface elasticity induces ki-
netic faceting or oscillations in the chemical potential of the
inclusions. Both processes were shown to be able to signifi-
cantly affect the coarsening behavior. In particular, oscilla-
tions were shown to stabilize microstructures containing in-
clusions of unequal sizes, without the need for some other
stabilizing process like inverse coarsening. An example of an
interface-stabilized system of inclusions was given.

In the last part, we showed that the effect of interactions
on the chemical potential of inclusions is akin to the effect of

confinement by cells of finite volumes. On the basis of this
observation, we explained why dense arrangements of inclu-
sions are required for inverse coarsening to take place; an
example was presented. Finally, we proposed a modified
LSW model to account for the effect of elasticity �both bulk
and interface contributions� on coarsening. The predictions
of the model were shown in Sec. V B to be in excellent
agreement with the experimental observations: in bulk-
elasticity-dominated systems, coarsening initially proceeds
with a reduced exponent but gradually reaches a stable state
through inverse coarsening; in interface-elasticity-dominated
cases, transitions from a normal coarsening state with expo-
nent 1 /3 to a stable state take place, and final inclusion dis-
tribution functions of finite widths are observed. The combi-
nation of these two effects is sufficient to explain essentially
all the coarsening anomalies attributed to elastic effects.

This work demonstrates that elasticity provides two dis-
tinct pathways for controlling the morphology and coarsen-
ing kinetics of multiphase microstructures: the traditional
route involving interinclusion interactions, and a novel route
relying on interface effects. It should be possible to use this
dichotomy to further enhance our control over microstruc-
tures. Indeed, on the one hand, interface elasticity provides
an unselective stabilization process that can operate nearly
irrespective of the morphological features of the microstruc-
tures. On the other hand, our results suggest that interinclu-
sion interactions can only stabilize monodisperse microstruc-
tures; however, they can also induce shape changes and
movement of inclusions. Careful balancing of these two fac-
tors could thus enable precise tuning of the microstructural
properties, as hinted by the wide range of behaviors observed
in real materials where these two factors simultaneously op-
erate. However, understanding of the forces involved in mi-
crostructural evolution will not be complete until the impact
of correlations between inclusions is understood: since both
inverse coarsening and inclusion migration operate at high
volume fraction, complex correlations, not taken into ac-
count here, could form and affect both kinetic and morpho-
logical features of the system. This will be the subject of
future investigation.
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